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ABSTRACT

This report provides a comprehensive implementation of an unstructured mesh
generation method that refines a triangulated grid by locally bisecting triangles
on their longest edge, until they satisfy a given local condition. The method is
relatively simple to implement, has the capacity to quickly generate a refined
mesh with triangles that rapidly change size over a short distance, and does
not create triangles with small or large angles.
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Mesh Generation via Local Bisection Refinement of
Triangulated Grids

Executive Summary

A mesh is a collection of polygonal (or polyhedral) elements that are designed to approx-
imate a geometric domain. Meshes have numerous and varied applications in engineering
and scientific computing, such as the numerical solution of partial differential equations
using the finite element method, computer aided design, rendering computer graphics, and
for representing terrain surfaces in geographical information systems.

This report emerged from a study of path planning for military aircraft conducting
missions in hostile environments, where the objective was to control the aircraft such that
the risk posed by the environment was minimised. In that study, mesh elements were
smallest in regions where the risk to the aircraft was highest. This enabled minimum risk
paths to be accurately captured while restricting the number of elements in the mesh, thus
improving the efficiency of the numerical method used to calculate optimal paths.

This report documents a comprehensive implementation of an unstructured mesh gen-
eration method that refines a triangulated grid by locally bisecting triangles on their
longest edge until they satisfy a given local condition. The refined mesh consists of reg-
ular right-angled triangles, which have 45, 45 and 90 degree angles. The vertices of the
triangles are ordered such that minimal computations are required to identify their longest
edge and to ensure the bisected triangles are compatible, that is, all edges are shared with
at most one other triangle. The method is relatively simple to implement, has the capac-
ity to quickly generate a refined mesh with triangles that rapidly change size over a short
distance, and does not create triangles with small or large angles.

The implementation provided by this report has the following desirable features. Mesh
data structures are chosen to enable local bisection refinement to occur in constant run-
ning time and with minimal computations. A local refinement condition is derived that
guarantees the local triangulation diameter of the refined mesh will obey a specified bound;
hence the numerical error of computations on the mesh can be controlled while restricting
the number of triangles. The mesh refinement algorithm is tested and shown to achieve
the anticipated linear running time with respect to the number of triangles in the refined
mesh. Employing a uniform triangulated grid to initialise the mesh creates virtual buck-
ets. It follows that point location can be accomplished in constant running time without
requiring additional memory.
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Notation

N natural numbers

Zn n-dimensional space of integers

Rn n-dimensional space of real numbers

x a generic n-dimensional vector, x = (x1, x2, . . . , xn)

‖x‖ magnitude (two-norm) of x, ‖x‖ =
√∑n

i=1 x
2
i

‖x‖1 one-norm of x, ‖x‖1 =
∑n

i=1 |xi|
(e1, e2, . . . ) an ordered list with elements ei; for example, a vector

{e1, e2, . . . } an unordered list with elements ei; for example, a set

| · | number of entries in a data structure

a = b mod i modular arithmetic

d · e ceiling of a real number

b · c floor of a real number

O( · ) “big O” Landau symbol

Ω the given domain, Ω ⊂ R2

t triangle in Ω

T triangulation of Ω

V (T ) set of nodes that comprise T

Nx number of nodes in T

Nt number of triangles in T

δ the specified maximum grid spacing for T

h triangulation diameter

h(x) local triangulation diameter at x ∈ V (T )

h the specified target triangulation diameter

h(x) the specified target local triangulation diameter at x ∈ V (T )

h(t) the specified target local triangulation diameter at t ∈ T
h(i) the specified target local triangulation diameter at ti ∈ T
T0 coarse triangulation of Ω

δ grid spacing of T0

tb bisection neighbour of t

ib index of the bisection neighbour of ti

`b bisection edge length

`−1
b inverse bisection edge length
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bt the specified target bisection edge length for t

L(t) level of refinement of t

O(t) orientation of the arrangement of the vertices of t

V (t) references to the vertices of t, V (t) = (v1, v2, v3)

N(t) references to the neighbours of t, N(t) = (n1, n2, n3)

N node data structure (array)

T triangle data structure (array)

D generic data structure (array)

D[i] ith entry in D
D[i, j] jth entry in D[i]

D[i : j] ith to jth consecutive entries in D
D[i, j : k] jth to kth consecutive entries in D[i]

T [i, 1 : 3] V (ti)

T [i, 4 : 6] N(ti)

T [i, 7] O(ti)

T [i, 8] L(ti)

PN null data array for padding N
PT null data array for padding T
True “true” Boolean data type

False “false” Boolean data type

N (x) neighbourhood of x ∈ V (T )

Ne number of triangles in T0 with an edge on any one side of [0, 1]2

T V data structure for references to triangle vertices in T

T V
0 data structure for references to triangle vertices in T0

T N
0 data structure for references to triangle neighbours in T0

β reference to a null boundary triangle, β < 0

k(ti) and k(i) determine which vertices of ti form the bisection edge

Sb stack (LIFO queue) of references to triangles to bisect

A adjacency list data structure

E [i] edges of ti

ML maximum level of refinement in T
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1 Introduction

A mesh is a collection of polygonal (or polyhedral) elements that are designed to approx-
imate a geometric domain. Meshes have numerous and varied applications in engineering
and scientific computing, such as the numerical solution of partial differential equations
using the finite element method, computer aided design, rendering computer graphics, and
for representing terrain surfaces in geographical information systems.

This report emerged from a study of path planning for military aircraft conducting
missions in hostile environments, where the objective was to control the aircraft such that
the risk posed by the environment was minimised. In that study, mesh elements were
smallest in regions where the risk to the aircraft was highest. This enabled minimum risk
paths to be accurately captured while restricting the number of elements in the mesh,
thus improving the efficiency of the numerical method used to calculate optimal paths
[Looker 2013].

Meshes are either structured or unstructured. A node (element vertex) of a structured
mesh is referenced by a tuple of indices (one for each spatial dimension), and adjacent nodes
are found by translating each index of the tuple by unity. A node of an unstructured mesh
is referenced by a single index, and topological attributes of the mesh are stored in separate
data structures to enable adjacent nodes and elements to be found [Hjelle & Dæhlen 2006].
Note that the characterisation of a mesh as either structured or unstructured relates to
how the mesh is stored in memory; it does not relate to the geometric structure of the
mesh. However, structured meshes must have an underlying geometric structure, whereas
this may or may not be the case for unstructured meshes [Nelson 2014].

Structured meshes are simpler to implement and faster to generate compared with
unstructured meshes. However, unstructured meshes allow greater flexibility in the choice
of element, and can attain a rapid change in element size over a shorter distance using
fewer elements than a structured mesh, resulting in more efficient computations on the
mesh [Shewchuk 1997b, Shewchuk 2012, Nelson 2014].

This report documents a comprehensive implementation of the unstructured mesh
generation method of Maubach [1995], focussing on the case of a two-dimensional mesh;
although the method can be applied in higher dimensions [Maubach 1995, Arnold, Mukher-
jee & Pouly 2000]. Maubach’s method refines a triangulation (a mesh with triangular
elements) by locally bisecting triangles on their longest edge until they satisfy a given
local condition. The refined mesh consists of regular right-angled triangles, which have
45, 45 and 90 degree angles, as shown in Figure 1. The vertices of the triangles are ordered
to allow their longest edge to be identified without any computations1 and to ensure the
bisected triangles are compatible, that is, all edges are shared with at most one other
triangle.

Maubach’s method is relatively simple to implement, has the capacity to quickly gen-
erate a refined mesh with triangles that rapidly change size over a short distance, and
does not create triangles with small or large angles (which may cause numerical difficul-
ties). However, all refined elements are regular right-angled triangles and this may be too

1The phrase “without any computations” is to be interpreted as “without any searching, sorting or
numerical computations” throughout this report.
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Figure 1: A computational mesh generated using Maubach’s method.

restrictive for some applications [Shewchuk 2012]. Furthermore, other techniques such as
Delaunay mesh generation [Cheng, Dey & Shewchuk 2012] produce size-optimal meshes
that have fewer triangles without losing numerical precision, and hence more efficient
computations can be performed on the resulting mesh.

The introduction continues with a review of local bisection refinement where the key
algorithms of Maubach’s method are presented, and concludes with a brief discussion of the
triangulation diameter. Section 2 examines the data structures chosen to store the mesh.
A condition for local mesh refinement is derived in Section 3 with the aim of controlling
the numerical error of computations performed on the mesh. Initial mesh construction
for the case of a uniform triangulated grid is presented in Section 4. Section 5 contains
the implementation of Maubach’s method that is the principal subject of this report. An
algorithm for constructing an adjacency list of the nodes from the refined mesh is presented
in Section 6. Determining a triangle that contains a given point is a fundamental operation
on a mesh, and is known as point location; this is discussed in Section 7.

1.1 Local Bisection Refinement

In this section, some elementary notation and terminology is introduced, followed by a
review of local bisection refinement.

2 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–3095

Let Ω ⊂ R2 be a given domain. A triangle in Ω is denoted by t where xi ∈ Ω are the
vertices of t. A triangulation T of Ω is defined by2

T = {t | t do not overlap, are compatible, and all xi ∈ Ω}.

The nodes of T are defined to be the set of vertices that comprise all t ∈ T . A more precise
definition of T can be found in Hjelle & Dæhlen [2006].

Maubach’s method begins with a coarse triangulation T0 of Ω, where all t0 ∈ T0 are
identical. The number of bisections of t0 required to generate a descendant t ∈ T is the
level of refinement of t, given by L(t); the level of refinement of all t0 is defined to be zero.
Maubach’s method generates a refined T by locally bisecting triangles on their longest
edge, which shall be referred to as the bisection edge.

Local bisection refinement is accomplished by two procedures: the first bisects a trian-
gle and maintains an ordering of the descendant’s vertices to enable their bisection edges
to be subsequently identified; and the second procedure guarantees the descendants are
compatible.

Initially all t ∈ T0 have their vertices arranged anticlockwise such that the first and
third vertices form the bisection edge. BisectTriangle (Algorithm 1) bisects a given
triangle t and creates descendants t1 and t2. The order of the vertices of t1 and t2 is chosen
to ensure their bisection edges can be immediately identified, without any computations,
if they are subsequently bisected. However, BisectTriangle is not sufficient to generate
a refined T as mesh incompatibilities will be introduced.

Algorithm 1: BisectTriangle

Input: t ∈ T where t has vertices (x1,x2,x3)
Result: descendants t1 and t2 are created

1 k ← 2− (L(t) mod 2)
2 z← 1

2 (x1 + xk+1)
3 if k = 1 then
4 t1 ← (x1, z,x3)
5 t2 ← (x2, z,x3)
6 else
7 t1 ← (x1,x2, z)
8 t2 ← (x2,x3, z)

9 L(t1)← L(t) + 1
10 L(t2)← L(t) + 1

A record of triangle neighbours is maintained to facilitate the avoidance of mesh in-
compatibilities. Two triangles are neighbours if they share an edge. Compatibly divisible
triangles are neighbours that share their bisection edge. The neighbour of t on its bisection
edge is called the bisection neighbour and denoted by tb. Incompatibilities are avoided
if two compatibly divisible triangles are bisected simultaneously. If L(t) = L(tb) then t

2The symbol T may denote a generic triangulation or the state of a triangulation being refined using
Maubach’s method.
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and tb are compatibly divisible, otherwise t will be compatibly divisible with one of the
descendants of tb [Maubach 1995, Theorem 5.1].

This is exploited in the recursive algorithm RefineTriangle (Algorithm 2) to com-
patibly refine a given triangle; the recursion depth of RefineTriangle is bounded by the
maximum level of refinement in T [Maubach 1995]. RefineTriangle calls itself repeatedly
on a sequence of triangles until a compatibly divisible triangle is found. This sequence of
triangles is then bisected in reverse order to preserve compatibility.

Algorithm 2: RefineTriangle

Input: t ∈ T
Result: t is compatibly refined

1 tb ← bisection neighbour of t
2 if L(t) = L(tb) then
3 BisectTriangle(t)
4 BisectTriangle(tb)
5 foreach compatibly divisible triangle t′ visited by RefineTriangle do
6 t′b ← bisection neighbour of t′

7 BisectTriangle(t′)
8 BisectTriangle(t′b)

9 else
10 add t to the sequence of triangles visited by RefineTriangle
11 RefineTriangle(tb)

Maubach’s method has linear running time with respect to the number of trian-
gles in the final refined mesh. This follows from the bound on the recursion depth of
RefineTriangle that only depends on the maximum level of refinement in T , and since
Maubach’s method is based on bisection refinement.

1.2 Triangulation Diameter

A key attribute of triangulations relevant to scientific computing applications is the trian-
gulation diameter h, as the numerical error of computations performed on triangulations
can often be estimated in terms of h. The triangulation diameter of T is defined to be the
maximum distance between adjacent nodes in the mesh; two nodes are adjacent if they
form an edge of a t ∈ T .

In this report the coarse triangulation T0 is defined to be a uniform triangulated grid,
where all t ∈ T0 are identical regular right-angled triangles with vertices coinciding with
the nodes of a square grid with spacing δ. The bisection edge length `b is given by

`b(δ, l) =
√

2
(1− l)

δ, (1)

for t ∈ T with l = L(t). Equation (1) follows from the Pythagorean theorem and the
definition of bisection refinement. It follows that the triangulation diameter of T generated
using Maubach’s method is given by h =

√
2 δ, since L(t) = 0 for all t ∈ T0.
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2 Mesh Data Structures

Maubach’s method generates an unstructured mesh and hence data structures must be
defined with particular fields to store the geometric and topological attributes of the mesh.
Many types of mesh data structure exist: some minimise the memory required to store the
mesh; others minimise the speed of performing certain operations on the mesh. Ultimately,
the choice of a particular mesh data structure is highly context dependent. Refer to Hjelle
& Dæhlen [2006] for a general discussion of data structures for triangulations.

It can be seen from Algorithms 1 and 2 that the following mesh data must be stored:

• nodes (which form the triangle vertices)

• references to triangle vertices

• references to triangle neighbours

• refinement levels.

The orientation of the arrangement of triangle vertices is also required to be stored for
updating references to triangle neighbours, the discussion of which is postponed until
Section 5. The orientation data is also used for point location, which is discussed in
Section 7.

For each call to RefineTriangle, node and triangle data must be found, new nodes
and triangles created, and some existing triangles must have their data updated. Therefore
three operations are required to be performed on the mesh data structures: find entries;
add new entries; and update existing entries.

A natural choice of mesh data structure is an array, as node and triangle data can be
referenced using their unique array indices, and looking up a particular entry in an array
is very fast. However, searching and adding entries to an array are expensive operations,
especially if the array is very large. Also note that rectangular arrays with entries of the
same type (integers, reals, . . . ) are more computationally efficient to store and access,
compared with non-rectangular (ragged) arrays with entries of mixed type.

These observations motivate the choice of mesh data structures employed in the im-
plementation of Maubach’s method discussed in this report.

2.1 Attributes

Let N be the data structure for nodes, where N is an array with entries N [i] = xi ∈ Ω.
The vertices of t ∈ T are denoted by V (t) and specified by references to entries in N ; for
example, if t has the vertices (x95,x154,x3) then V (t) = (95, 154, 3). For the general case
let V (t) = (v1, v2, v3) where vi ∈ N are references to entries in N . The vi are ordered
according to Maubach’s method; refer to Algorithm 1.

Let T be the data structure for triangles, where T is an array with entries T [i] ∈ Z8

that contain data associated with the ith triangle in T . The triangle neighbours of t ∈ T
are denoted by N(t) = (n1, n2, n3) where ni ∈ Z. If ni > 0 then ni references a triangle in
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T , otherwise if ni < 0 then ni references a null boundary triangle.3 The ni are ordered to
facilitate the identification of neighbours without any computations:

• n1 references the bisection neighbour

• neighbours are arranged anticlockwise about t

• if ni < 0 then t has an edge on the boundary of Ω that would be shared with ni, if
it was not a reference to a null boundary triangle.

Let O(t) ∈ {0, 1} represent the orientation of the arrangement of the vertices of t ∈ T ,
where O(t) = 0 indicates the vertices are arranged clockwise and O(t) = 1 indicates the
vertices have an anticlockwise arrangement. Further discussion of O(t) is postponed until
Section 5.

The ith entry of T is given by

T [i] = (vi1, vi2, vi3, ni1, ni2, ni3, oi, li),

where oi = O(ti) and li = L(ti). Let T [i, j] refer to the jth entry in T [i] for 1 6 j 6 8,
and T [i, j : k] refer to the jth to kth consecutive entries of T [i] for 1 6 j < k 6 8. It
follows that

T [i, 1 : 3] = V (ti),

T [i, 4 : 6] = N(ti),

T [i, 7] = O(ti),

T [i, 8] = L(ti).

The attributes of N and T facilitate a computationally efficient implementation of
Maubach’s method:

• N and T are rectangular arrays each with entries of the same type

• the order of the entries in T [i] enables references to triangle vertices and neighbours
to be identified without any computations

• the compact structure of T [i] minimises the need to append triangle data to multiple
data structures.

In fact, it will be shown in Section 2.2 that appending data to N and T can almost be
eliminated.

3The case ni = 0 will be discussed in Section 2.2.
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2.2 Memory Allocation

The triangulation T is initialised to T0 and stored inN and T , then calls to RefineTriangle
locally refine T resulting in new nodes and triangles being created. One option is to ap-
pend new node and triangle data to N and T ; however this is an expensive operation. A
more efficient alternative is to estimate the sizes of N and T necessary to store the final
refined T , and pad out N and T with the required amount of null data after initialisation.
These estimates should be upper bounds as this will eliminate the requirement to append
data to N and T ; the excess padding can be removed once the refinement of T is complete.

Maubach’s method refines T according to a given local condition, which in this report
is assumed to depend on a function that specifies the target bisection edge length bt for
each t ∈ T .4 To estimate the number of triangles in the final refined T , L(t) will be
estimated for each t ∈ T0 using bt. Then

∑
t∈T0

2L(t) triangles would be created if each
t ∈ T0 and all their descendants were bisected L(t) times. The inverse bisection edge
length `−1

b (δ, bt) is defined to return the minimum L(t) such that `b(δ, L(t)) 6 bt and is
given by5

`−1
b (δ, bt) =

⌈
2 log2

(√
2 δ/bt

)⌉
,

which follows from Equation (1).

The number of triangles in the final refined T is denoted by N f
t and can be estimated

in terms of `−1
b :

N f
t ≈

∑
t∈T0

2 `
−1
b (δ, bt). (2)

It can be shown that the number of nodes and triangles in a triangulation, and hence the
number of entries in N and T , are related via [Hjelle & Dæhlen 2006, Lemma 1.1]

|T | ∼ 2 |N | as |N | → ∞. (3)

Hence the number of nodes in the final refined T will be estimated using

N f
x ≈

⌊
1
2
N f
t

⌋
, (4)

with N f
t given by Equation (2).

Since N [i] ∈ R2 and T [i] ∈ Z8, the arrays of null data used to pad out N and T are
defined to be

PN = ((0.0, 0.0), . . . ),

PT = ((0, 0, 0, 0, 0, 0, 0, 0), . . . ).

At initialisation of Maubach’s method, T ← T0, the mesh data is stored in N and T , and
then

N ←
(
N [1],N [2], . . . ,N [Nx],PN [1], . . . ,PN [N f

x −Nx]
)
, (5)

T ←
(
T [1], T [2], . . . , T [Nt],PT [1], . . . ,PT [N f

t −Nt]
)
, (6)

4The refinement condition is discussed in Section 3.
5Note that `−1

b is not a true mathematical inverse.
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where N f
t and N f

x are given by Equations (2) and (4), respectively, and Nx is the number
of nodes and Nt the number of triangles in T .

Equations (2) and (4) represent informal upper bounds on N f
t and N f

x, and therefore
N and T as defined by Equations (5) and (6) may have insufficient padding to store the
final refined T . Consequently the residual padding must be checked before each iteration
of Maubach’s method. RefineTriangle is a recursive algorithm and hence the number
of nodes and triangles created per call cannot be known in advance, and for this reason
the residual padding must be checked before bisection is performed by BisectTriangle.
Observe from Algorithm 2 that BisectTriangle only bisects compatibly divisible triangles
and their bisection neighbours, creating one node and two triangles per call.6 Therefore if

|N | > Nx + 1, (7)

and
|T | > Nt + 2, (8)

then there is sufficient padding in N and T for at least one call to BisectTriangle. In
fact, it is now shown that Equation (7) implies Equation (8).

Let MT > 2 be a given number of additional null triangles that, if required, can be
used to pad out T . Motivated by Equation (4), bMT /2c null nodes will be used to pad
out N as required. Accordingly, |PT | > 2 |PN | for all iterations of Maubach’s method. It
follows that if Equation (7) is true, then for all iterations of Maubach’s method,

Nt + 2 6 |T | − 2 |PN |+ 2,

= |T | − 2 (|N | −Nx) + 2,

= |T | − 2 |N |+ 2 (Nx + 1),

6 |T |,

and therefore Equation (8) is also true.

The preceding discussion motivates the definition of CheckMemory presented in Algo-
rithm 3. Calling CheckMemory before bisection is performed by BisectTriangle guaran-
tees there will be sufficient null data in N and T to store new nodes and triangles.

Algorithm 3: CheckMemory

Result: N and T contain enough padding to call BisectTriangle on a triangle
and its compatibly divisible neighbour

1 if |N | < Nx + 1 then

2 N ← (N [1],N [2], . . . ,N [Nx],PN [1], . . . ,PN [ bMT /2c ])

3 T ← (T [1], T [2], . . . , T [Nt],PT [1], . . . ,PT [MT ])

6Bisecting a triangle that has its bisection edge on the boundary of Ω creates one node and one triangle
per call to BisectTriangle; this issue will be considered in Section 5.
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3 Local Refinement Condition

The aim of this section is to derive a local refinement condition that returns True if
RefineTriangle(t) must be called, or False otherwise; Maubach’s method will terminate
when this condition returns False for all t ∈ T . This local refinement condition will
be derived such that the distance between neighbouring nodes in the final refined T will
be bounded by a specified target, with the goal of controlling the numerical error of
computations performed on T , while curtailing Nt.

First, the local triangulation diameter is defined. The neighbourhood N (x) of a node
x in T is given by

N (x) = {y ∈ Ω | there exists a t ∈ T such that x ∈ t and y ∈ t}, (9)

where the notation z ∈ t is to be interpreted as “z is a vertex of t”. The local triangulation
diameter h(x) is defined in terms of N (x):

h(x) = max
y∈N (x)

‖x− y‖. (10)

Let V (T ) represent the set of nodes that comprise T , that is,

V (T ) = {x ∈ Ω | there exists a t ∈ T such that x ∈ t}.

Equation (10) provides a more general definition of the triangulation diameter h than that
given in Section 1.2:

h = max
x∈V(T )

h(x). (11)

Let h(x) be the specified target local triangulation diameter for all x ∈ V (T ). Since the
local refinement condition will be defined in terms of triangles, define h(t) via

h(t) = min
x∈t

h(x), (12)

for all t ∈ T . Note that h(t) is equivalent to bt discussed in Section 2.2.

The local refinement condition is given by

`b(δ, L(t)) > h(t), (13)

where δ is the grid spacing of T0, and recall that Maubach’s method will terminate when
Equation (13) returns False for all t ∈ T . Let T denote a triangulation generated using
Maubach’s method. Equation (13) ensures T will obey

h(x) 6 h(x) for all x ∈ V (T ). (14)

To verify Equation (14), first let

T (x) = {t ∈ T | x ∈ t},
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and choose any x ∈ V (T ). Then

h(x) = max
y∈N (x)

‖x− y‖,

6 max
t∈T(x)

`b(δ, L(t)) (property of local bisection refinement),

6 max
t∈T(x)

h(t) (by the negation of Equation (13)),

= max
t∈T(x)

min
y∈t

h(y) (by Equation (12)),

6 h(x) (as x ∈ t for all t ∈ T (x)).

The given target triangulation diameter h is analogously defined to h in Equation (11).
Therefore Equation (13) enables h of the final refined T to be controlled using h, since
Equation (14) implies h 6 h, thereby controlling the numerical error of computations
performed on T .

4 Coarse Triangulation

Maubach’s method begins with a coarse triangulation T0 of Ω. To simplify the discussion
Ω is defined to be [0, 1]2; non-square domains and domains with holes are considered in
Appendix A. The aim of this section is to present algorithms for constructing T0.

Maubach’s method can simply be initialised using a T0 containing two triangles that
are compatibly divisible. However in this report T0 is chosen to be a uniform triangulated
grid, where all t ∈ T0 are identical regular right-angled triangles with vertices coinciding
with the nodes of a square grid with spacing δ. In Section 7 this choice will be shown to
facilitate efficient point location. The assignment of indices to nodes and triangles in T0

is shown in Figure 2.

The specified maximum grid spacing δ for T is related to δ via

δ =
⌈
δ
−1
⌉−1

. (15)

This definition of δ implies that h 6 h, which is consistent with Equation (14). Further-
more, the number of triangles in T0 that have an edge on any one side of [0, 1]2 is given
by

Ne =
⌈
δ
−1
⌉
.

It follows that there are (Ne + 1)2 nodes and 2N2
e triangles in T0.

4.1 Construction

The Cartesian coordinates of the nodes that constitute the vertices of the triangles in T0

are generated by CoarseNodes (Algorithm 4) and stored in N . The order of the nodes in
N is shown in Figure 2.
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Figure 2: A coarse triangulation showing the assignment of indices to nodes and triangles,
and the grid spacing δ.

Algorithm 4: CoarseNodes

Input: Ne ∈ N
Output: N

1 δ ← N−1
e

2 N ←
(
PN [1], . . . ,PN [(Ne + 1)2]

)
3 k ← 1

4 foreach i ∈ (0, 1, . . . , Ne) do
5 foreach j ∈ (0, 1, . . . , Ne) do
6 N [k]← δ (j, i)
7 k ← k + 1

8 return N

The vertices of the triangles in T0 are stored in T V
0 as references to their unique entries

in N . References to the vertices of the ith triangle are stored in T V
0 [i]: the order of the

T V
0 [i] agrees with the assignment of indices to triangles shown in Figure 2. Since L(t) = 0

for all t ∈ T0, the order of the three references in each T V
0 [i] corresponds to an anticlockwise

arrangement of the vertices such that the first and last vertices form the bisection edge;
see Algorithm 1. The data structure T V

0 is constructed by CoarseTriangleVertices as

UNCLASSIFIED 11
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per Algorithm 5. Note that T V
0 only contains references to vertices and therefore T V

0 is
initialised using the null data structure given by P0

T = ((0, 0, 0) , . . . ).

Algorithm 5: CoarseTriangleVertices

Input: Ne ∈ N
Output: T V

0

1 n← Ne + 1
2 T V

0 ←
(
P0
T [1], . . . ,P0

T [2N2
e ]
)

3 k ← 1

4 foreach i ∈ (0, 1, . . . , Ne − 1) do
5 foreach j ∈ (0, 1, . . . , Ne − 1) do

6 T V
0 [k, 1]← j + 1 + n (i+ 1)

7 T V
0 [k, 2]← j + 1 + ni

8 T V
0 [k, 3]← j + 2 + ni

9 k ← k + 1

10 T V
0 [k, 1]← j + 2 + ni

11 T V
0 [k, 2]← j + 2 + n (i+ 1)

12 T V
0 [k, 3]← j + 1 + n (i+ 1)

13 k ← k + 1

14 return T V
0

The neighbours of the ith triangle in T0 are stored in T N
0 [i] as references to their

unique triangle indices; the assignment of indices to triangles is shown in Figure 2.
The order of the three references in each T N

0 [i] coincides with the attributes of T for
storing triangle neighbours; see Section 2.1. The data structure T N

0 is constructed by
CoarseTriangleNeighbours in accordance with Algorithm 6, where the index β < 0 de-
notes a reference to a null boundary triangle. Observe from Figure 2 that triangles with
an odd index may have a boundary edge on the left and bottom segments of the boundary
of T0, whereas triangles with an even index may have a boundary edge on the right and
top segments of the boundary of T0; only the first and last triangles have two boundary
edges.
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Algorithm 6: CoarseTriangleNeighbours

Input: Ne ∈ N
Output: T N

0

1 n← 2N2
e // number of triangles in T0

2 s← 2Ne // number of triangles in a strip
3 l← 1 // left boundary indicator
4 r ← 1 // right boundary indicator
5 k ← n− s+ 1
6 T N

0 ←
(
P0
T [1], . . . ,P0

T [n]
)

7 T N
0 [1]← (2, β, β)

8 T N
0 [n]← (n− 1, β, β)

9 foreach i ∈ (2, 3, . . . , n− 1) do
10 if i is odd then
11 if i = ls+ 1 then
12 l← l + 1
13 T N

0 [i]← (i+ 1, β, i− s+ 1)
14 else if i > s then
15 T N

0 [i]← (i+ 1, i− 1, i− s+ 1)
16 else
17 T N

0 [i]← (i+ 1, i− 1, β)

18 else
19 if i = rs then
20 r ← r + 1
21 T N

0 [i]← (i− 1, β, i+ s− 1)
22 else if i < k then
23 T N

0 [i]← (i− 1, i+ 1, i+ s− 1)
24 else
25 T N

0 [i]← (i− 1, i+ 1, β)

26 return T N
0
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4.2 Mesh Initialisation

The results of the previous sections can now be employed to initialise T . First T0 is
constructed in accordance with Algorithms 4 to 6 and stored in the data structures N and
T ; the variables Nx and Nt are also stored. Equations (2) and (4) are then used to estimate
the number of triangles in the final refined T , and the amount of null data required to store
T is appended to N and T . This procedure is executed by InitialiseMesh (Algorithm 7),
which has O(Nt) running time.

Algorithm 7: InitialiseMesh

Input: δ > 0 and h( · ) as per Equation (16)
Result: T is initialised and stored in N and T ; Nx and Nt are also stored

1 Ne ←
⌈
1/δ
⌉

2 Nx ← (Ne + 1)2

3 Nt ← 2N2
e

4 N ← CoarseNodes(Ne)

5 T V
0 ← CoarseTriangleVertices(Ne)

6 T N
0 ← CoarseTriangleNeighbours(Ne)

7 T ← (PT [1], . . . ,PT [Nt])

8 foreach i ∈ (1, 2, . . . , Nt) do

9 T [i]←
(
T V

0 [i, 1], T V
0 [i, 2], T V

0 [i, 3], T N
0 [i, 1], T N

0 [i, 2], T N
0 [i, 3], 1, 0

)
10 δ ← 1/Ne

11 N f
t ←

∑Nt
i=1 2 `

−1
b (δ, h(i))

12 N f
x ←

⌊
N f
t /2
⌋

13 N ←
(
N [1],N [2], . . . ,N [Nx],PN [1], . . . ,PN [N f

x −Nx]
)

14 T ←
(
T [1], T [2], . . . , T [Nt],PT [1], . . . ,PT [N f

t −Nt]
)

Algorithms 5, 6 and the initialisation of T on line 9 of Algorithm 7 establish the
attributes of T discussed in Section 2.1. Also note that the target local triangulation
diameter function, given by Equation (12), is modified to take a triangle index as an
argument for use on line 11 of Algorithm 7:

h(i) = min
j∈T [i,1:3]

h(N [j]), (16)

for i ∈ {1, 2, . . . , Nt}.
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5 Mesh Refinement

This section concludes the implementation of Maubach’s method. Algorithms for simulta-
neously bisecting compatibly divisible triangles and updating their neighbours are exam-
ined; these are the most important algorithms of the implementation as their behaviour
is critically linked to Maubach’s method and the data structures N and T . The top-
level mesh refinement algorithm is also presented, together with a demonstration of its
computational performance.

5.1 Bisecting Triangles

BisectTriangle bisects a given triangle ti ∈ T and creates the two descendants. A high-
level description of BisectTriangle is given in Algorithm 1. The objective of this section
is to provide a detailed implementation of an algorithm that simultaneously bisects two
compatibly divisible triangles in accordance with Maubach’s method.

It will be shown in Section 7 that point location can be achieved using a constant
running-time algorithm without storing descendants. Therefore, information regarding
ti is not retained after its bisection and the index i is reused to reference one of the
descendants of ti. The other descendant of ti is given the index ī = Nt + 1, where Nt

represents the state of Nt immediately prior to bisecting ti.

Maubach’s method stipulates that the vertices of descendants be ordered to enable the
descendants’ bisection edges to be subsequently identified without any computations. If
ti is the triangle to be bisected, this order depends on the value of k(ti), where

k(ti) = 2− (L(ti) mod 2) ∈ {1, 2}.

Let V (ti) = (a, b, c). If k(ti) = 1, then a and b reference the nodes that form the bisection
edge, otherwise a and c reference the nodes that form the bisection edge.

Consider bisecting ti for the case k(ti) = 1 and O(ti) = 0, which corresponds to a
clockwise arrangement of the vertices. Then by Maubach’s method, the vertices of the
descendants ti and t̄i will satisfy

V (ti) = (a, d, c), (17)

V (t̄i) = (b, d, c), (18)

where the new node with index d is stored in N [Nx + 1], that is, d = Nx + 1. The
configuration of the descendants ti and t̄i is shown in Figure 3 for the case being considered.
Observe from Figure 3 and Equations (17) and (18) that the descendants satisfy O(ti) = 0
and O(t̄i) = 1.

This example reveals the dependence of the configuration of the descendants of ti on
k(ti) and O(ti). The configuration of descendants must be known to update triangle
neighbours without any computations, which is discussed in Section 5.2. Since k(ti) and
O(ti) can each take two values, there are four configurations of the descendants. The
remaining three configurations can be extrapolated from Figure 3 by ordering the vertices
according to Maubach’s method.
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Figure 3: The configuration of the descendants of ti for the case k(ti) = 1 and O(ti) = 0.
The references to the descendants are i and ī, and a, b, c and d denote references to
vertices. Note that Nx and Nt represent their states immediately prior to bisecting ti.

Let i be the index of a triangle to be bisected and ib the index of its bisection neigh-
bour. If tib is not a null boundary triangle and ti and tib are compatibly divisible, then
BisectTriangles(i) (Algorithm 8) simultaneously bisects ti and tib , creating their de-
scendants in accordance with Maubach’s method, and updates their neighbours.

The bisection of a triangle with its bisection edge on the boundary of Ω is undertaken by
BisectBoundaryTriangle (Algorithm 19 in Appendix B). A compatibly divisible triangle
with a non-bisection edge on the boundary of Ω is bisected using BisectTriangles.

Note that for the algorithms in Section 5 and Appendix B, the symbols Nx and Nt

appearing in the “Input” and “Result” fields represent the states of Nx and Nt immediately
prior to calling the routines.
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Algorithm 8: BisectTriangles

Input: i ∈ {1, 2, . . . , Nt} such that T [i, 4] > 0 and T [i, 8] = T [ib, 8]
Result: T [i] and T [ib] are updated; N [Nx + 1], T [Nt + 1] and T [Nt + 2] are

created

1 CheckMemory( )

2 ib ← T [i, 4]
3 V ← T [i, 1 : 3]
4 Vb ← T [ib, 1 : 3]

5 Nx ← Nx + 1
6 k(i)← 2− (T [i, 8] mod 2)
7 N [Nx]← 0.5 (N [V [1]] +N [V [k + 1]])

8 Nt ← Nt + 2
9 O ← (T [i, 7] + 1) mod 2

10 Ob ← (T [ib, 7] + 1) mod 2
11 T [i, 8]← T [i, 8] + 1
12 T [ib, 8]← T [ib, 8] + 1

13 if k(i) = 1 then
14 T [i, 1]← V [1]
15 T [i, 2]← Nx

16 T [i, 3]← V [3]
17 T [ib, 1]← Vb[1]
18 T [ib, 2]← Nx

19 T [ib, 3]← Vb[3]
20 T [Nt − 1]← (V [2], Nx, V [3], 0, 0, 0, O, T [i, 8])
21 T [Nt]← (Vb[2], Nx, Vb[3], 0, 0, 0, Ob, T [ib, 8])
22 else
23 T [i, 1]← V [1]
24 T [i, 2]← V [2]
25 T [i, 3]← Nx

26 T [ib, 1]← Vb[1]
27 T [ib, 2]← Vb[2]
28 T [ib, 3]← Nx

29 T [Nt − 1]← (V [2], V [3], Nx, 0, 0, 0, T [i, 7], T [i, 8])
30 T [Nt]← (Vb[2], Vb[3], Nx, 0, 0, 0, T [ib, 7], T [ib, 8])

31 switch (k(i), T [i, 7], T [ib, 7]) do
32 case (1, 0, 0) or (2, 1, 1)
33 UpdateNeighbours1(i)
34 case (1, 1, 0) or (2, 0, 1)
35 UpdateNeighbours2(i)
36 case (1, 0, 1) or (2, 1, 0)
37 UpdateNeighbours3(i)
38 otherwise
39 UpdateNeighbours4(i)
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5.2 Updating Triangle Neighbours

It was shown in Section 5.1 that the configuration of the descendants of ti can be de-
termined from the values of k(ti) and O(ti) prior to bisection. This will now be used in
conjunction with the attributes of T to update the references to neighbours of compatibly
divisible triangles post bisection, without any computations.

Consider bisecting compatibly divisible triangles ti and tib for the case k(ti) = 1,
O(ti) = 0 and O(tib) = 0. The attributes of T stipulate that ib and i be the first references
to the neighbours of ti and tib , respectively. Let the second and third references to the
neighbours of ti and tib satisfy

N(ti) = (ib, a, b), (19)

N(tib) = (i, c, d). (20)

The configuration of ti and tib and their neighbours prior to bisection is shown on the
left of Figure 4; this follows from Equations (19) and (20) and the attributes of T . The
configuration of the descendants of ti and tib and their neighbours is shown on the right of
Figure 4; this follows from Maubach’s method as per Figure 3. Observe that ti and tb are no
longer neighbours after bisection; likewise, tib and td are no longer neighbours. Therefore
N(tb) and N(td) must also be updated to reflect these changes; this is performed by call-
ing ReplaceTriangleNeighbour (Algorithm 20 in Appendix B). UpdateNeighbours1(i),
which is called by BisectTriangles (Algorithm 8), updates the neighbours of the descen-
dants of ti and tib for the case being considered. An implementation of UpdateNeighbours1
is presented in Algorithm 9.

Figure 4: The configuration of triangle neighbours before and after the bisection of com-
patibly divisible triangles ti and tib for the case k(ti) = 1, O(ti) = 0 and O(tib) = 0. Here
a, b, c and d represent triangle neighbours.

This example reveals the dependence of the configuration of neighbours on k(ti), O(ti)
and O(tib). Since each of these can take two values, there are potentially eight config-
urations of neighbours. However it can be shown that only four of these configurations
are independent. The remaining three independent configurations can be extrapolated
from Figures 3 and 4 by employing Maubach’s method and the attributes of T . Imple-
mentations of UpdateNeighbours for these cases can be found in Algorithms 21 to 23 in
Appendix B.
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Algorithm 9: UpdateNeighbours1

Input: i ∈ {1, 2, . . . , Nt − 2} such that (k(i), T [i, 7], T [ib, 7]) = (1, 0, 0) or (2, 1, 1)
Result: T [i, 4 : 6] and T [ib, 4 : 6] are updated; T [Nt − 1, 4 : 6] and T [Nt, 4 : 6] are

created

1 ī← Nt − 1
2 īb ← Nt

3 ib ← T [i, 4]
4 N ← T [i, 5 : 6]
5 Nb ← T [ib, 5 : 6]

6 T [i, 4]← N [1]
7 T [i, 5]← ī
8 T [i, 6]← īb

9 T [ib, 4]← Nb[1]
10 T [ib, 5]← īb
11 T [ib, 6]← ī

12 T [̄i, 4]← N [2]
13 T [̄i, 5]← ib
14 T [̄i, 6]← i

15 T [̄ib, 4]← Nb[2]
16 T [̄ib, 5]← i
17 T [̄ib, 6]← ib

18 ReplaceTriangleNeighbour(N [2], i, ī)
19 ReplaceTriangleNeighbour(Nb[2], ib, īb)

Consider bisecting a triangle ti with its bisection edge on the boundary of Ω. The
configuration of the descendants of ti and their neighbours only depends on k(ti) and
O(ti), as ti does not have a neighbour on its bisection edge prior to bisection. The neigh-
bours of the descendants of ti are updated by calling UpdateBoundaryNeighbours1 or
UpdateBoundaryNeighbours2, depending on the values of k(ti) and O(ti); implementa-
tions of these routines can be found in Appendix B.
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5.3 Refinement Algorithm

An updated version of RefineTriangle that incorporates the algorithms of the previous
sections is presented in Algorithm 10. Most of the challenges of implementing Maubach’s
method originate in the data structures for storing T and the routines for updating triangle
neighbours. This is reflected by the similarity of Algorithm 10 and the more abstract
version of RefineTriangle appearing in Algorithm 2.

RefineTriangle(i) calls itself repeatedly, starting with ti, until a compatibly divisible
triangle tc is found; see Algorithm 10. This generates a sequence of triangles. A stack
(last-in-first-out queue) Sb enables the triangles in this sequence to be bisected in reverse
order from tc to ti. Therefore compatibility is preserved because only compatibly divisible
triangles are bisected; this is performed by Algorithm 11. RefineMesh (Algorithm 12)
initialises Sb then calls RefineTriangle repeatedly until the local refinement condition
(on line 5 of Algorithm 12) returns False for all t ∈ T , and then removes the excess null
data from N and T .

Finally, a refined mesh on [0, 1]2 is generated using Maubach’s method by specifying
the maximum grid spacing δ and the target local triangulation diameter h( · ), and calling
InitialiseMesh

(
δ, h( · )

)
followed by RefineMesh

(
δ, h( · )

)
. Extending this implementa-

tion to allow for non-square domains and domains with holes is considered in Appendix A.

Algorithm 10: RefineTriangle

Input: i ∈ {1, 2, . . . , Nt}
Result: ti is compatibly refined

1 ib ← T [i, 4]

2 if ib < 0 then
3 BisectBoundaryTriangle(i)
4 BisectTrianglesInStack( )
5 else if T [i, 8] = T [ib, 8] then
6 BisectTriangles(i)
7 BisectTrianglesInStack( )
8 else
9 push i onto Sb

10 RefineTriangle(ib)

Algorithm 11: BisectTrianglesInStack

Result: triangles in stack Sb are compatibly bisected

1 while Sb is not empty do
2 j ← pop the top element from Sb
3 BisectTriangles(j)
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Algorithm 12: RefineMesh

Input: δ > 0 and h( · ) as per Equation (16)
Result: the final refined T is stored in N and T

1 initialise Sb
2 δ ← 1/

⌈
1/δ
⌉
// see Equation (15)

3 i← 1

4 while i 6 Nt do
5 while `b(δ, T [i, 8]) > h(i) do
6 RefineTriangle(i)

7 i← i+ 1

8 N ← N [1 : Nx]
9 T ← T [1 : Nt]

5.4 Computational Performance

It was noted in Section 1.1 that Maubach’s method has O(Nt) running time. It will now be
demonstrated that O(Nt) running time can be attained in practice when InitialiseMesh
and RefineMesh are used for mesh generation.

The mesh shown in Figure 1 was used for testing the computational performance of
InitialiseMesh and RefineMesh. The maximum grid spacing was fixed at δ = 0.05 and
the target local triangulation diameter was chosen to be

h(x) =

{
d, ‖x‖1 < 0.4
1, otherwise,

where 0 < d <
√

2 δ. Values of d were chosen that resulted in the final refined trian-
gulations containing between 9,560 and 2,113,944 triangles, with a maximum 13 levels of
refinement. Average CPU times and a least-squares line of best fit were calculated after
running InitialiseMesh and RefineMesh 10 times for each value of d.7

Figure 5 shows the scaled average CPU times τ̂ = τ/τ9560 versus N̂t = Nt/9560, where
τ9560 is the average CPU time to generate the refined triangulation with 9,560 triangles.
The O(Nt) running time of InitialiseMesh and RefineMesh for the triangulations being
considered is evident in Figure 5, where the line of best fit has a gradient of approximately
1.01.

795% confidence intervals were also calculated, but they were too small to be visible on the plot.

UNCLASSIFIED 21



DSTO–TR–3095 UNCLASSIFIED

Figure 5: The scaled average running time of the implementation of Maubach’s method
documented in this report, versus the scaled number of triangles; a line of best fit is shown
with the data points.

6 Adjacency List

Finding the neighbours of a given node is a common operation on a mesh. The neighbours
of a node x are the nodes that are adjacent to x; two nodes are adjacent if they form an
edge of a triangle.8 An adjacency list A is an ordered collection of unordered lists, where
A[i] is the set of all node indices that reference the neighbours of the node xi.

The adjacency list can be constructed during mesh generation in an analogous manner
to the initialisation and maintenance of the mesh data for triangle neighbours; see Sec-
tions 4.1 and 5.2. Alternatively, the adjacency list can be constructed from an existing
mesh; this approach is considered here.

AdjacencyList (Algorithm 13) constructs A by finding all the edges in T . Edges
are constructed from triangle vertex references by visiting each t ∈ T once; this procedure
duplicates references to node neighbours as each edge is shared by two triangles.9 Therefore
each list in A must have capacity for 16 indices, since a node can have at most eight
neighbours in a mesh generated using Maubach’s method. After finding all the edges in
T , the duplicated indices and any excess padding are deleted from each list in A.

8The neighbours of x can also be given by the set N (x) \ x, where N (x) is given by Equation (9).
9Boundary edges are an exception.
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Algorithm 13: AdjacencyList

Input: Nx and T V

Output: A
1 pV ← ((2, 3), (1, 3), (1, 2))
2 pA ← (1, . . . ) // |pA| = Nx

3 A ← ((0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), . . . ) // |A| = Nx

4 foreach i ∈
(
1, 2, . . . ,

∣∣T V
∣∣) do

5 foreach j ∈ (1, 2, 3) do
6 n← T V[i, j]
7 np ← pA[n]
8 A[n, np]← T V[i, pV [j, 1]]
9 A[n, np + 1]← T V[i, pV [j, 2]]

10 pA[n]← np + 2

11 foreach i ∈ (1, 2, . . . , Nx) do
12 A[i]← delete duplicates from A[i]
13 A[i]← delete zero from A[i]

14 return A

AdjacencyList takes Nx and T V as inputs, where T V is a data structure contain-
ing references to the triangle vertices of T ; T V[i] = T [i, 1 : 3] for i ∈ {1, 2, . . . , Nt}.
References to the vertices that form unordered edges of all t ∈ T are obtained from
pV = ((2, 3), (1, 3), (1, 2)) in Algorithm 13, that is, (T V[i, 2], T V[i, 3]), (T V[i, 1], T V[i, 3])
and (T V[i, 1], T V[i, 2]) are references to the unordered edges of ti. The list pA in Algo-
rithm 13 enables node neighbours to be added to the lists in A via an in-place change: the
next neighbour of node i to be found is placed in position pA[i] of A[i]. Most programming
languages provide functions for efficiently deleting duplicates from a list, and hence the
details of line 12 of Algorithm 13 are omitted.

The implementation of AdjacencyList given by Algorithm 13 has the following prop-
erties:

• A is constructed in O(Nx) running time, as the two loop bodies each have O(1)
running time

• O(Nx) memory is required to store A

• references to node neighbours are obtained from A in fast O(1) running time.

7 Point Location

Given a query point y ∈ Ω, find a t ∈ T that geometrically contains y. This is known as the
point location problem. Point location is a fundamental operation on a mesh and therefore
has many applications [Mücke, Saias & Zhu 1999, Soukal, Malková & Kolingerová 2012].
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One prominent application of point location is interpolation. Let q(x) be a quantity
that is known at each x ∈ V (T ), and suppose there is a requirement to calculate q(y) for
some y ∈ Ω. After using a point location method to find a t ∈ T that contains y, q(y)
can be interpolated from the vertices xi ∈ t using, for example, barycentric co-ordinates:

ζ1 + ζ2 + ζ3 = 1,

y = ζ1x1 + ζ2x2 + ζ3x3,

q(y) = ζ1q(x1) + ζ2q(x2) + ζ3q(x3).

Point location is accomplished in two steps:

1. select a t ∈ T to begin the search

2. traverse T until a t ∈ T containing the query point y is found.

A judicious selection of the initial triangle is critical for an efficient implementation of point
location. A dedicated data structure can be used to perform the second step; a binary
tree is an obvious choice for a mesh generated using Maubach’s method. Alternatively,
the existing triangle neighbour data can be employed to “walk” from triangle to triangle
until a triangle containing y is found. The two steps of point location are examined in the
following two sections.

7.1 Initial Triangle Selection

A technique that subdivides Ω into “buckets” using a uniform grid can be used to select
the initial triangle by identifying a bucket containing y [Asano et al. 1985]. The simplicity
of this subdivision enables a bucket containing y to be found in constant running time,
however additional memory is required to store the buckets.

An alternative to bucketing that does not require additional memory begins by ran-
domly choosing a subset of points from V (T ). A point from this subset that minimises
the distance to y is then selected to be the starting point of a straight-line walk to y. The
resulting point location algorithm has an O(N1/3

x ) expected running time [Mücke, Saias
& Zhu 1999].

For a mesh generated using Maubach’s method, the initial triangle can be selected
in constant running time without requiring additional memory. This follows from three
factors:

• Maubach’s method uses bisection refinement and therefore all descendants of a coarse
triangle are geometrically contained within that triangle

• data regarding the history of descendants is not stored and the index of a parent
triangle is reused to reference one of its descendants

• Algorithm 7 generates a uniform triangulated grid T0 to initialise Maubach’s method.
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Hence if i is the index of a coarse triangle in T0 that contains y, then the vertices of ti ∈ T
are at most a distance of h from y.

Fast initial triangle selection for point location is the key reason Algorithm 7 was chosen
to initialise Maubach’s method in preference to simply using two compatible triangles.
Algorithm 7 enables fast initial triangle selection by creating virtual buckets. Therefore
initial triangle selection can be achieved by finding a coarse triangle in T0 containing y;
this is performed by InitialTriangle in Algorithm 14.

Algorithm 14: InitialTriangle

Input: Ne ∈ N and y ∈ [0, 1]2

Output: i ∈ {1, 2, . . . , Nt}
1 δ ← 1/Ne

2 (x, y)← y
3 x′ ← max {1, dNe xe}
4 y′ ← max {1, dNe ye}
5 i← 2x′ − 1 + 2Ne(y′ − 1)

6 if y > δ(x′ + y′ − 1)− x then
7 return i+ 1
8 else
9 return i

InitialTriangle finds a coarse triangle in T0 that contains y in constant running
time by exploiting the simple geometry of uniform grids and the numbering of triangles
shown in Figure 2. First a square containing y is ascertained by counting the triangles
that would be traversed if the search were to begin in t1 ∈ T0, followed by t2 ∈ T0, and
so on: on line 5 of Algorithm 14, 2Ne(y′ − 1) is the number of coarse triangles in each
traversed row, and 2x′ − 1 is the minimum number of coarse triangles traversed from the
left of the grid to a square containing y. Then a coarse triangle containing y will be above
or below the line connecting the upper left and lower right corners of a square containing
y; this test is performed on line 6 of Algorithm 14.

7.2 Triangle Containing the Query Point

After employing InitialTriangle to initialise point location, T is traversed until a t ∈ T
is found that contains the query point y. This section is devoted to the examination of
a walking method for traversing T that uses the orientation test shown in Figure 6 to
determine the next step in the walk. The PointLocation routine (Algorithm 15) utilizes
this walking method to find a t containing y.

The objective of a walking method is to move closer to y with each step in the walk.
Let t be the current triangle being tested for containing y. PointLocation effectively
bisects Ω along each edge of t and then steps into the first neighbour of t that belongs to
the subdomain containing y. The orientation test determines the subdomain containing
y: if t does not contain y, then y will be to the right of one of the edges of t; see Figure 6.
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Figure 6: The orientation test: does d lie on, to the left of, or to the right of the line
defined by the triangle edge (a, b)? The arrows indicate the directions of the vectors used
to perform the test. The test is applied to the other edges in the same manner.

If y is not to the right of any edge of t, then t must contain y and PointLocation returns
the index of t and terminates.

The orientation test is performed by establishing the sign of the determinant of a
matrix with entries constructed from the edge and point being tested [Soukal, Malková &
Kolingerová 2012]. For the example shown in Figure 6, this is equivalent to determining
the sign of the third component of the cross product (d− b)× (a− b).10 The orientation
test is performed on line 14 of Algorithm 15.

The orientation test is known to produce incorrect results when y and the edge being
tested are approximately colinear [Shewchuk 1997a]. A detailed examination of this issue
is beyond the scope of this report; however the impact of an erroneous orientation test
is examined here. Let the edge e of t be approximately colinear with y, and assume the
orientation test has just produced an incorrect result. Consider these three possibilities:

1. a wrong neighbour of t is stepped into, or

2. subsequent steps cycle between neighbouring triangles that do not contain y, or

3. subsequent steps oscillate between a triangle and its neighbour that does contain y.

The first problem is inconsequential as the outcome will simply be a somewhat longer walk.
The second problem is solved by testing the edges of t in a random order for each step
of the walk [Devillers, Pion & Teillaud 2002]. This is successful because cycles can only
occur if PointLocation continues to erroneously step into the neighbour of t that shares
e: since y cannot be colinear with two edges of t simultaneously, y must be to the right
of one edge that is not e, and therefore testing this edge before e will halt the cycle. The
third problem is solved by preventing PointLocation from returning to the triangle that
was previously tested, which will also improve the efficiency of PointLocation [Devillers,
Pion & Teillaud 2002]. However, this may result in PointLocation returning a triangle t′

that does not contain y. Even so, in this case y must be approximately on the edge of t′

10The points a, b and d are considered here to be 3-dimensional vectors in the xy plane.

26 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–3095

shared with its neighbour that does contain y, and the resulting numerical error may be
tolerable for the application employing point location.

PointLocation requires the vectors used to perform the orientation test to have an
anticlockwise orientation about the triangle being tested, as per Figure 6. The data
structure E [i] is used to ensure the edges of ti form vectors with the desired orientation,
in an efficient manner.11 The edges of all ti ∈ T are represented implicitly by E [i], where

E [i] =



((1, 2), (3, 1), (2, 3)), k(i) = 1 and O(i) = 0

((2, 1), (3, 2), (1, 3)), k(i) = 1 and O(i) = 1

((3, 1), (2, 3), (1, 2)), k(i) = 2 and O(i) = 0

((1, 3), (2, 1), (3, 2)), k(i) = 2 and O(i) = 1,

for i ∈ {1, 2, . . . , Nt}. E [i] has the following attributes:

• E [i, j] represents the jth edge of ti

• E [i, 1] represents the bisection edge of ti with the remaining edges arranged anti-
clockwise about ti

• E [i, j] for j = 1, 2, 3 (in order) are the positions of T [i, 1 : 3] containing references to
nodes that enable vectors to be formed that rotate anticlockwise about ti.

For example, consider the case k(i) = 1 and O(i) = 0. Then N [T [i, 1]] − N [T [i, 2]],
N [T [i, 3]] − N [T [i, 1]] and N [T [i, 2]] − N [T [i, 3]] (in order) are vectors that rotate anti-
clockwise about ti.

An implementation of PointLocation is presented in Algorithm 15. PointLocation
calls InitialTriangle and returns the index of a triangle containing the query point y.
Algorithm 15 has constant running time and requires insignificant additional memory to
store E . Recall that if i = InitialTriangle(Ne,y), then the vertices of ti ∈ T are at
most a distance of h from y. Equivalently, a triangle containing y will be at most O(2ML)
steps away from ti, where ML = maxj∈{1,2,...,Nt} L(tj). Hence the number of steps taken
by PointLocation is limited to 2ML . The orientation test is performed on line 14 of
Algorithm 15.

Note that Algorithm 15 is only valid for Ω = [0, 1]2. Extending Algorithm 15 to allow
for non-square domains and domains with holes is considered in Appendix A.

11E can also be used with the boundary marker β to efficiently determine the references to nodes on the
boundary of Ω. This is particularly useful for a general Ω, which is considered in Appendix A.
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Algorithm 15: PointLocation

Input: Ne ∈ N and y ∈ Ω
Output: i ∈ {1, 2, . . . , Nt}

1 iprev ← 0
2 n← 0
3 nmax ← 2ML

4 B ← True
5 i← InitialTriangle(Ne,y)
6 t← (N [T [i, 1]], N [T [i, 2]], N [T [i, 3]])

7 while B and n 6 nmax do
8 B ← False
9 E ← E [i]

10 P ← random permutation of {1, 2, 3}
11 foreach j ∈ P do
12 (v1, v2)← y − t[E[j, 2]]
13 (e1, e2)← t[E[j, 1]]− t[E[j, 2]]

// do the orientation test, but don’t go back or step out of Ω
14 if T [i, j + 3] 6= iprev and T [i, j + 3] > 0 and sign(v1e2 − v2e1) > 0 then
15 B ← True
16 iprev ← i
17 i← T [i, j + 3]
18 t← (N [T [i, 1]], N [T [i, 2]], N [T [i, 3]])
19 break

20 n← n+ 1

21 return i

8 Conclusion

This report provides a comprehensive implementation of the unstructured mesh genera-
tion method of Maubach [1995], focussing on the case of a two-dimensional mesh on a
square domain. An extension to this implementation that enables mesh generation on
two-dimensional non-square domains and domains with holes is presented in Appendix A.

The implementation has the following desirable features. Mesh data structures were
chosen to enable local bisection refinement to occur in constant running time and with
minimal computations. A local refinement condition was derived that guarantees the local
triangulation diameter of the refined mesh will obey a specified bound; hence the numer-
ical error of computations on the mesh can be controlled while restricting the number of
triangles. The mesh refinement algorithm was tested and shown to achieve the anticipated
linear running time with respect to the number of triangles in the refined mesh. Employ-
ing a uniform triangulated grid to initialise Maubach’s method creates virtual buckets.
It follows that, for a mesh generated using Maubach’s method, point location can be
accomplished in constant running time without requiring additional memory.
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Appendix A Domains other than [0, 1]2

The implementation of Maubach’s method documented in the body of this report is only
valid for Ω = [0, 1]2. This implementation is now extended to allow for non-square do-
mains and domains with holes, by covering the general domain Ω with a square domain,
initialising Maubach’s method using this square domain, and then removing the triangles
not in Ω. Maubach’s method can then be used to refine the triangles in Ω.

First consider Ω = [a, b]2. Let D∞ = b− a and yc = (y1, y2) such that

Ω = [y1 −D∞/2, y1 +D∞/2]× [y2 −D∞/2, y2 +D∞/2] . (A1)

Let u : [0, 1]2 → [a, b]2 where

u(y) = D∞ (y − (0.5, 0.5)) + yc. (A2)

The inverse of u is u−1 : [a, b]2 → [0, 1]2 where

u−1(y) =
1
D∞

(y − yc) + (0.5, 0.5). (A3)

In this case Ne and δ are given by:

Ne =
⌈
D∞

δ

⌉
, (A4)

δ =
D∞
Ne

. (A5)

The following changes must be made to accommodate the case Ω = [a, b]2:

1. use the definition of Ne given by Equation (A4) in all algorithms

2. use the definition of δ given by Equation (A5) in all algorithms

3. immediately after line 4 of Algorithm 7, replace N with the result of applying the
function u to each element of N

4. replace y with u−1(y) on line 5 of Algorithm 15.

Now consider the general case where Ω is non-square, possibly with holes. Assume
there exists a routine DomainQ(y) that returns True if y ∈ Ω, or False otherwise, and
determine a square domain as per Equations (A1) to (A5) that covers Ω, that is, if y ∈ Ω
then y ∈ [a, b]2. To accommodate the general case, make the above changes for a square
domain and modify InitialiseMesh (Algorithm 7) as follows:

5. immediately after line 6 of Algorithm 7, call FilterNodes (Algorithm 16)

6. then call FilterVertices (Algorithm 17)

7. then call FilterNeighbours (Algorithm 18).

Finally,

8. replace line 5 of Algorithm 15 with i←Mt

[
InitialTriangle

(
Nt, u

−1(y)
)]

,

where Mt is constructed by Algorithm 17.

30 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–3095

Algorithm 16: FilterNodes

Input: N generated by Algorithm 4
Result: nodes not in Ω are removed from N ,Mx is constructed and Nx is updated

1 j ← 1
2 Mx ← (1, 2, . . . , Nx)
3 Ñ ← (PN [1], . . . ,PN [Nx])
4 n← Nx

5 Nx ← 0

6 foreach i ∈ (1, 2, . . . , n) do
7 if DomainQ(N [i]) then
8 Nx ← Nx + 1
9 Ñ [Nx]← N [i]

10 Mx[i] = j
11 j ← j + 1
12 else
13 Mx[i] = 0

14 N ← Ñ [1 : Nx]

Algorithm 17: FilterVertices

Input: T V
0 generated by Algorithm 5

Result: references to nodes not in Ω are removed from T V
0 , Mt is constructed and

Nt is updated

1 j ← 1

2 T̃ V
0 ←

(
P0
T [1], . . . ,P0

T [Nt]
)

3 Mt ← (1, 2, . . . , Nt)
4 n← Nt

5 Nt ← 0

// triangles that do not have all three vertices in Ω are removed
6 foreach i ∈ (1, 2, . . . , n) do
7 V ←

(
Mx

[
T V

0 [i, 1]
]
,Mx

[
T V

0 [i, 2]
]
,Mx

[
T V

0 [i, 3]
])

8 if V [1] > 0 and V [2] > 0 and V [3] > 0 then
9 Nt ← Nt + 1

10 T̃ V
0 [Nt]← V

11 Mt[i] = j
12 j ← j + 1
13 else
14 Mt[i] = β

15 T V
0 ← T̃ V

0 [1 : Nt]
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Algorithm 18: FilterNeighbours

Input: T N
0 generated by Algorithm 6

Result: references to triangles not in Ω are removed from T N
0

1 k ← 0
2 n←

∣∣T N
0

∣∣
3 N ← (0, 0, 0)

4 T̃ V
0 ←

(
P0
T [1], . . . ,P0

T [n]
)

// n 6= Nt when FilterNeighbours is called
5 foreach i ∈ (1, 2, . . . , n) do
6 if Mt[i] > 0 then
7 foreach j ∈ (1, 2, 3) do
8 if T N

0 [i, j] > 0 then
9 N [j]←Mt

[
T N

0 [i, j]
]

10 else
11 N [j]← T N

0 [i, j]

12 k ← k + 1

13 T̃ N
0 [k] = N

// now k = Nt

14 T N
0 ← T̃ N

0 [1 : k]
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Appendix B Other Cases for Bisecting Triangles

and Updating their Neighbours

Algorithm 19: BisectBoundaryTriangle

Input: i ∈ {1, 2, . . . , Nt} such that T [i, 4] < 0
Result: T [i] is updated; N [Nx + 1] and T [Nt + 1] are created

1 CheckMemory( )

2 V ← T [i, 1 : 3]
3 Nx ← Nx + 1
4 k(i)← 2− (T [i, 8] mod 2)
5 N [Nx]← 0.5 (N [V [1]] +N [V [k + 1]])

6 Nt ← Nt + 1
7 O ← (T [i, 7] + 1) mod 2
8 T [i, 8]← T [i, 8] + 1

9 if k = 1 then
10 T [i, 1]← V [1]
11 T [i, 2]← Nx

12 T [i, 3]← V [3]
13 T [Nt]← (V [2], Nx, V [3], 0, 0, 0, O, T [i, 8])
14 else
15 T [i, 1]← V [1]
16 T [i, 2]← V [2]
17 T [i, 3]← Nx

18 T [Nt]← (V [2], V [3], Nx, 0, 0, 0, T [i, 7], T [i, 8])

19 switch (k(i), T [i, 7]) do
20 case (1, 0) or (2, 1)
21 UpdateBoundaryNeighbours1(i)
22 otherwise
23 UpdateBoundaryNeighbours2(i)

Algorithm 20: ReplaceTriangleNeighbour

Input: i, j, k ∈ {1, 2, . . . , Nt}
Result: ti, which was a neighbour of tj , is updated to be a neighbour of tk

1 if i > 0 then
2 if T [i, 4] = j then
3 T [i, 4]← k
4 else if T [i, 5] = j then
5 T [i, 5]← k
6 else
7 T [i, 6]← k
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Algorithm 21: UpdateNeighbours2

Input: i ∈ {1, 2, . . . , Nt − 2} such that (k(i), T [i, 7], T [ib, 7]) = (1, 1, 0) or (2, 0, 1)
Result: T [i, 4 : 6] and T [ib, 4 : 6] are updated; T [Nt − 1, 4 : 6] and T [Nt, 4 : 6] are

created

1 ī← Nt − 1
2 īb ← Nt

3 ib ← T [i, 4]
4 N ← T [i, 5 : 6]
5 Nb ← T [ib, 5 : 6]

6 T [i, 4]← N [2]
7 T [i, 5]← ib
8 T [i, 6]← ī

9 T [ib, 4]← Nb[1]
10 T [ib, 5]← īb
11 T [ib, 6]← i

12 T [̄i, 4]← N [1]
13 T [̄i, 5]← i
14 T [̄i, 6]← īb

15 T [̄ib, 4]← Nb[2]
16 T [̄ib, 5]← ī
17 T [̄ib, 6]← ib

18 ReplaceTriangleNeighbour(N [1], i, ī)
19 ReplaceTriangleNeighbour(Nb[2], ib, īb)
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Algorithm 22: UpdateNeighbours3

Input: i ∈ {1, 2, . . . , Nt − 2} such that (k(i), T [i, 7], T [ib, 7]) = (1, 0, 1) or (2, 1, 0)
Result: T [i, 4 : 6] and T [ib, 4 : 6] are updated; T [Nt − 1, 4 : 6] and T [Nt, 4 : 6] are

created

1 ī← Nt − 1
2 īb ← Nt

3 ib ← T [i, 4]
4 N ← T [i, 5 : 6]
5 Nb ← T [ib, 5 : 6]

6 T [i, 4]← N [1]
7 T [i, 5]← ī
8 T [i, 6]← ib

9 T [ib, 4]← Nb[2]
10 T [ib, 5]← i
11 T [ib, 6]← īb

12 T [̄i, 4]← N [2]
13 T [̄i, 5]← īb
14 T [̄i, 6]← i

15 T [̄ib, 4]← Nb[1]
16 T [̄ib, 5]← ib
17 T [̄ib, 6]← ī

18 ReplaceTriangleNeighbour(N [2], i, ī)
19 ReplaceTriangleNeighbour(Nb[1], ib, īb)
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Algorithm 23: UpdateNeighbours4

Input: i ∈ {1, 2, . . . , Nt − 2} such that (k(i), T [i, 7], T [ib, 7]) = (1, 1, 1) or (2, 0, 0)
Result: T [i, 4 : 6] and T [ib, 4 : 6] are updated; T [Nt − 1, 4 : 6] and T [Nt, 4 : 6] are

created

1 ī← Nt − 1
2 īb ← Nt

3 ib ← T [i, 4]
4 N ← T [i, 5 : 6]
5 Nb ← T [ib, 5 : 6]

6 T [i, 4]← N [2]
7 T [i, 5]← īb
8 T [i, 6]← ī

9 T [ib, 4]← Nb[2]
10 T [ib, 5]← ī
11 T [ib, 6]← īb

12 T [̄i, 4]← N [1]
13 T [̄i, 5]← i
14 T [̄i, 6]← ib

15 T [̄ib, 4]← Nb[1]
16 T [̄ib, 5]← ib
17 T [̄ib, 6]← i

18 ReplaceTriangleNeighbour(N [1], i, ī)
19 ReplaceTriangleNeighbour(Nb[1], ib, īb)
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Algorithm 24: UpdateBoundaryNeighbours1

Input: i ∈ {1, 2, . . . , Nt − 1} such that (k(i), T [i, 7]) = (1, 0) or (2, 1)
Result: T [i, 4 : 6] is updated; T [Nt, 4 : 6] is created

1 ī← Nt

2 β ← T [i, 4]
3 N ← T [i, 5 : 6]

4 T [i, 4]← N [1]
5 T [i, 5]← ī
6 T [i, 6]← β

7 T [̄i, 4]← N [2]
8 T [̄i, 5]← β
9 T [̄i, 6]← i

10 ReplaceTriangleNeighbour(N [2], i, ī)

Algorithm 25: UpdateBoundaryNeighbours2

Input: i ∈ {1, 2, . . . , Nt − 1} such that (k(i), T [i, 7]) = (1, 1) or (2, 0)
Result: T [i, 4 : 6] is updated; T [Nt, 4 : 6] is created

1 ī← Nt

2 β ← T [i, 4]
3 N ← T [i, 5 : 6]

4 T [i, 4]← N [2]
5 T [i, 5]← β
6 T [i, 6]← ī

7 T [̄i, 4]← N [1]
8 T [̄i, 5]← i
9 T [̄i, 6]← β

10 ReplaceTriangleNeighbour(N [1], i, ī)
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